

Date Planned : / /	Daily Tutorial Sheet-1	Expected Duration : 90 Min		
Actual Date of Attempt ://	JEE Advanced (Archive)	Exact Duration :		

Actu	al Date	of Attempt :	<u>/ /</u>	JEE Ad	vanced	(Archive)	Exc	act Duration :_		
L.	27g o	f Al will react co	mpletely	with how many	grams o	f oxygen ?			(1978)	
	(A)	8g	(B)	16 g	(C)	32 g	(D)	24 g		
2.	When t	the same amoun	t of zinc	is treated sepa	rately w	ith excess of su	ılphuric a	cid and excess	of sodium	
	hydrox (A)	ide, the ratio of v 1:1	volume o (B)	f hydrogen evolv 1:2	ved is : (C)	2:1	(D)	9:4	(1978)	
3.		of a mixture of I					. ,		dution for	
,		ete oxidation. (_			_		_		
ł.		olecule weight of	KMnO₄	. The equivalen	t weight	of KMnO ₄ who	en it is co	nverted into K ₂	,	
	(A)	М	(B)	M/3	(C)	M/5	(D)	M/7	(1980)	
5.	A 1.00	g sample of	H ₂ O ₂ so	olution contain	ing X p	oer cent H ₂ O	by weig	ht requires X	mL of a	
		4 solution for o					=			
	KMnO	$_4$ solution.						\odot	(1981)	
3.	One m	iole of N ₂ H ₄ lo	ses ten	moles of electron	ons of f	orm a new co	mpound \	Y. Assuming th	at all the	
	nitroge	nitrogen appears in the new compound, what is the oxidation state of nitrogen in Y? (There is no change								
		oxidation state o						$lackbox{}$	(1981)	
	(A)	-1	(B)	-3	(C)	+3	(D)	+5		
7.		xylamine reduce		_		n:			(1982)	
	_	$OH + 4Fe^{3+} \rightarrow N_2$		_					lacksquare	
) thus produced			with a s	tandard perma	nganate s	olution. The rea	ction is	
	•	$+5 \text{Fe}^{2+} + 8 \text{H}^+ \rightarrow$		-		-1 4- 1 14 E	O I f	41-1- 411-4-41		
		nL sample of hy with an exces	•							
		4 solution for co				_				
	the orig	ginal solution.								
3.	The ox	idation number (of carbon	in CH ₂ O is:					(1983)	
	(A)	-2	(B)	+2	(C)	0	(D)	+4		
€.	The eq	uivalent weight o	of MnSO	4 is half of its n	noleculai	weight when i	t is conve	rted to :	(1983)	
	(A)	$\mathrm{Mn_2O_3}$	(B)	MnO_2	(C)	MnO_4^-	(D)	$\mathrm{MnO_4^{2-}}$		
10.	2.68×	10^{-3} moles of sol	ution co	ntaining an ion	A ⁿ⁺ req	uire 1.61×10 ⁻³	moles of	MnO_4^- for the ox	cidation of	
	A^{n+} to	AO_3^- in acidic:	medium.	What is the val	lue of n ?	>		•	(1984)	
		-						_		

- 11. The brown ring complex compound is formulated as [Fe(H₂O)₅(NO)]SO₄. The oxidation state of iron is:
 - (A)
- 1
- **(B)** 2
- **(C)** 3
- **(D)** 0
- (1987)
- **12.** (i) What is the weight of sodium bromate and molarity of solution necessary to prepare 85.5 mL of 0.672 N solution when the half-cell reaction is: (1987)

$$BrO_3^- + 6H^+ + 6e^- \longrightarrow Br^- + 3H_2O$$

(ii) What would be the weight as well as molarity if the half-cell reaction is:

$$2BrO_3^- + 12H^+ + 10e^- \longrightarrow Br_2 + 6H_2O$$

- 13. A sample of hydrazine sulphate $(N_2H_6SO_4)$ was dissolved in 100 mL of water, 10 mL of this solution was reacted with excess of ferric chloride solution and warmed to complete the reaction. Ferrous formed was estimated and it required 20 mL of M/50 potassium permanganate solution. Estimate the amount of hydrazine sulphate in one litre of the solution. (1988)
- 14. The oxidation states of the most electronegative element in the products of the reaction, BaO_2 with dil. H_2SO_4 is: (1988)
 - **(A)** 0 and -1

(B) -1 and -2

(C) -2 and 0

- **(D)** -2 and -1
- An equal volume of a reducing agent is titrated separately with 1 M KMnO $_4$ in acid, neutral and alkaline media. The volumes of KMnO $_4$ required are 20 mL in acid, 33.4 mL in neutral and 100 mL in alkaline media. Find out the oxidation state of manganese in each reduction product. Give the balanced equations for all the three half reaction. Find out the volume of 1 M K $_2$ Cr $_2$ O $_7$ consumed, if the same volume of the reducing agent is titrated in acid medium. (1989)